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Atmospheric data assimilation is the name scientists give to the techniques of blending 
atmospheric observations with atmospheric model results to obtain an accurate idea of 
what the atmosphere looks like at any given. time. Because two pieces of information 
are used, observations and model results, the outcomes of data assimilation procedure 
should be better than what one would get by using one of these two pieces of information 
alone. There is a number of different mathematical techniques that fall under the data 
assimilation jargon. In theory most these techniques accomplish about the same thing. 
In practice, however, slight differences in the approaches amount to faster algorithms 
in some cases, more economical algorithms in other cases, and even give better overall 
results in yet some other cases because of practical uncertainties not accounted for by 
theory. Therefore, the key is to find the most adequate data assimilation procedure for 
the problem in hand. 

In our Data Assimilation group we have been doing extensive research to try and find 
just such data assimilation procedure. One promising possibility is what we call retro- 
spective iterated analysis (RIA) scheme. This procedure has recently been implemented 
and studied in the context of a very large data assimilation system built to help predict 
and study weather and climate. Although the results from that study suggest that the 
RIA scheme produces quite reasonable results, a complete evaluation of the scheme is 
very difficult due to the complexity of that problem. The present work steps back a little 
bit and studies the behavior of the RIA scheme in the context of a small problem. The 
problem is small enough to allow full assessment of the quality of the RIA scheme, but it 
still has some of the complexity found in nature, namely, its chaotic-type behavior. We 
find that the RIA performs very well for this small but still complex problem which is a 
result that seconds the results of our early studies. 
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Abstract 

Forecasts from lag-1 retrospective analyses are naturally better skilled than regular forecasts when 
verified one-lag ahead in time. This is not too surprising since these so called lag-1 retrospective forecasts 
have made use of the observations at the verification time. Because of their better quality one could 
conceive using these retrospective forecasts as background fields to recalculate previously calculated 
analyses. When this is done sequentially and intermittently it gives rise to a filtering procedure referred 
to  as the retrospective iterated analysis (RIA) scheme. Implementation of this analysis strategy in the 
Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) has recently been shown 
to improve the overall quality of the assimilation products. In the present short article we evaluate the 
performance of the RIA scheme for Lorenz (1963) dynamics. In this context, Monte Carlo simulations 
can be used to properly evaluate the performance of the scheme. The results show that for this type of 
dynamics the benefits from the RIA scheme are non-negligible in comparison to more standard procedures, 
such as the extended Kalman filter. These results are a second confirmation of the benefits from the RIA 
scheme observed in the GEOS DAS implementation. 

1. INTRODUCTION 

The fixed-lag Kalman smoother was introduced by Cohn et al. (1994) as a means to perform retro- 
spective data assimilation. This procedure presents a way of extracting information from the observations 
beyond what is usually extracted by filtering techniques such as three-dimensional variational analysis or 
four-dimensional schemes such as the extended Kalman filter (EKF). Smoothing in general operates not 
only by using observations in the past and present time of the estimate, as in filtering, but also by using 
observations a t  future times. In particular, a fixed-lag smoother of lag e estimates the state at  time tk 
by combining a filter estimate obtained using observations before and a t  time tk with observations past 
time tk up to time tk+& for e 2 1. The fixed-lag Kalman smoother is an extension of the Kalman filter 
providing this type of enhanced correction to the filter estimates (e.g., see Chapter 7 of Anderson and 
Moore 1979, for more details). In the context of sequential estimation the fixed-lag smoother technique 
(an extension of the fixed-point smoother) is a natural extension of the underlying sequential filtering 
strategy. 

In its original formulation, fixed-lag analyses are produced as a replacement of the usual filter analyses. 
Because fixed-lag analyses are expected to be of superior quality than the filter analyses it is conceivable 
to design iterative procedures in which the fixed-lag analyses feed back into the filter to try and enhance 
the quality of the overall filter. Todling (2000) proposed a feedback-type procedure in which, at  a each 
analysis time, the analysis from a lag-1 smoother is used to recalculate the background field used in the 
filtering procedure. Therefore, a revised filter analysis can be produced using the retrospective (lag-1) 
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forecast as background instead of the original background. In linear optimal filtering and smoothing it 
can be shown that these retrospective forecasts are no more accurate than the original filter analyses and 
therefore an iterative procedure such as this does not result in any enhancement of the filtering results. 
However, in suboptimal situations, including the case of filters developed for nonlinear dynamics, this 
retrospective iterated analysis (RIA) scheme may prove useful. Indeed, Zhu et al. (2002) have recently 
implemented the RIA scheme in the Goddard Earth Observing System (GEOS) Data Assimilation System 
(DAS) and have found it to yield an overall improvement in the quality of the assimilated fields. 

The purpose of this short communication is to show that the RIA scheme provides significant improve- 
ments also when applied to strongly nonlinear dynamics. In what follows we introduce in section 2 the 
RIA scheme in the context of the EKF, and show in section 3 how the results of the EKF compare with 
those of the RIA scheme when applied to the Lorenz (1963) dynamics. Conclusions appear in section 4. 

2. BACKGROUND 

Introductions to the EKF can be found elsewhere in the literature (e.g., Jazwinski 1970, Theorem 
8.1). In the case of autonomous nonlinear dynamics and linear observation system these equations can 
be written as 

WLlk-1 = M ( W i - I l k - 1 )  7 (14 

(1b) 

( IC) 

(14 

(le) 

f 
P k l k  - 1 = M k  ,k - 1 (wi- 1 lk - 1 )Pi - 1 lk - iM;f,k - 1 (wi- 1 - 1) + Qk 7 

Wtlk = w,flk-l + Kklk (Yi - HkWLlk-l) , 

Kklk = PLlk-1HT(HkPil&-1HT + Rk)-l 9 

p;lk = (I - KkJkHk)P:lk-l(I - Kk(kHkIT + KklkRkK;Slk , 

where the dynamical propagation expressions ( la)  and (lb) obtain the n-dimensional forecast state and 
n x n-dimensional forecast error covariance, respectively, with the n x n matrix M k , k - l  ( w ~ - l l k - l )  being 
the Jacobian of the nonlinear dynamical operator M, 

This Jacobian is more commonly referred to as the tangent linear model, since it represents a series of 
consecutive linearizations around a reference trajectory initialized from wi- I , k -  1. The expressions (IC) 
and (Id) give the analysis state and analysis error covariance, respectively, when the pk-vector y i  of 
observations become available at time t k .  In the EKF the correction due to the observations is made 
through the Kalman gain matrix (le). The subscript notation follows that of Cohn et al. (1994), and 
briefly means that the n-vector wklj refers to an estimate valid at time t k  obtained using observations 
up to and including observations at  time t j .  

In the corresponding nonlinear extension of the linear fixed-lag Kalman smoother of Cohn et al. (1994; 
e.g., see Todling and Cohn 1996) a correction to the analysis ~ z - ~ ~ ~ - ~  a t  t k - 1  can be obtained for any 
lag L and is naturally denoted by ~ i - ~ ~ ~ + ~ .  In the present article only the lag L = 1 case is of interest. 
The lag-1 correction to the filter analysis a t  time t k - 1 ,  accounting for the observations a t  time t k ,  can be 
obtained through the expressions 

W i - l l k  = W i - 1 J k - l  + Kk-llk (Yi - HkW:lk-l) , 

P i - l l k  = (I - Kk-llkHkMk,k-l(Wi-l~k-l)) T 

(3a) 

(3b) P i - l l k - 1 ,  

where the second equation expresses the retrospective analysis error covariance matrix. Both wg- 
P,"-llk depend on the n x p k  retrospective weight matrix Kk-llk, 

and 

K ~ - ~ ~ ~  = ~ i - l l k ~ l ~ ~ , k - l ( ~ ~ ~ l l k ~ l ) ~ ~ ( ~ k ~ ~ l k ~ l ~ ~  + ~ ~ 1 - l .  (4) 



In its original formulation the fixed-lag (retrospective) analyses ~ i - ~ ~ ~  are created at  each time t k  and 
left as a second sequence of estimates (the first being the sequence of filter analyses). If the smoothing 
procedure is working properly this second sequence of (retrospective) analyses should be of better quality 
than the sequence of filter analyses. In particular, we can forecast from the lag-1 analyses for a time 
interval corresponding to a single lag = 1, that is, 

and build a sequence of retrospective forecasts + i l k .  In the linear optimal case, it can be shown that this 
sequence of forecasts is better skilled than the sequence of forecasts w ~ l k - l .  This is not surprising since 
these retrospective forecasts use the observations a t  the times they are valid for. Indeed, it can also be 
shown that these retrospective forecasts are no more skillful than the filter analyses w i l k .  This is also not 
surprising since in the linear optimal case, the Kalman filter provides the best linear unbiased estimate 
and therefore no other estimate can exceed its quality when the same observations are used. 

However, in the nonlinear case these statements are not necessarily true. As a matter of fact, it is 
indeed possible that the retrospective forecasts may be of better quality than the original filter analyses. 
The experiments of Zhu et a1 (2002) with a lag-1 retrospective analysis system built for GEOS DAS 
show that this is indeed the case in that system. This motivates using the retrospective forecasts to 
recalculate the filter estimates as the filter goes along in time. For instance, in the EKF case, once 
the lag-1 retrospective analysis has been calculated a t  time t k - 1 ,  say, we can calculate the retrospective 
forecast (5) and recalculate the filter analysis (IC) by replacing the background field wLlkWl with G - L l k .  

This leads to an iterative procedure that can be repeated further for each time t k ,  that is, the newly 
recalculated analysis can be further corrected through another lag-1 smoother calculation, and so on. 
The resulting procedure is referred to  as the retrospective iterated analysis (RIA) scheme. Notice that in 
the EKF context to recalculate the filter analysis properly the entire filter should be recalculated, that 
is, we should calculate (1) again starting from the retrospective analysis (3a) and retrospective forecast 
(5). Specifically, the second pass of the filter becomes 

e i 1 k  = Mk,k-l(WkO-lJk)Pi-lJkMT,k-l(WkO-llk) + Q k  , 

% i l k  = + i l k  + K k l k  ( y i  - H k G i l k )  

* i l k  = ( I  - k l k H k ) * { ( k ( I  - K k ~ k H k ) ~  -t K k l k R k K r p ,  (6c) 

K k l k  = P i l k H ; f ( H k I ’ [ l k H T  + R k ) - ’ .  

( 6 4  

(6b) 

(6d) 

Just as when the observation operator H k  is nonlinear and an iterated extended Kalman filter (Jazwin- 
ski 1970, Theorem 8.2) can be developed, essentially based on Newton-type methods for solving nonlinear 
equations, here too, we can think of the re-feeding of the lag-1 retrospective analyses as a Newton-type 
iteration. Indeed one finds an iterated filter-smoother procedure in Jazwinski (1970; Theorem 8.3) that 
much resembles the RIA procedures above and is equally aimed at  providing incremental corrections due 
to  nonlinear dynamics, the difference being the RIA is based on a fixed-lag smoother where the iterated 
filter-smoother procedure is based on a fixed-interval smoother. Just as suggested in Todling (2000), and 
implemented in Zhu et al. (2002), here we are only interested in recalculating the filter analyses once per 
observation time, that is, we are interested in a single iteration only. In practice, analysis schemes are 
already computationally demanding and it may be difficult to justify more than a single iteration of the 
RIA scheme. 

An obvious consequence of the RIA scheme is the introduction of correlation between errors of the 
(revised) background, that is, the retrospective forecasts, and the observations at  each time. Indeed when 
showing that retrospective forecasts are no better than filter analyses in the linear optimal case these 
correlations need to be taken in to account. This means that, a t  least in principle, equations (6) used to 
recalculate the filter analysis should be modified accordingly. Precisely, it is the weighting matrix K k l k  

in (6d) and the corresponding analysis error covariance matrix @ilk  in (6c) that should be modified. 
These modifications follow standard filter modifications when the the background and observations are 



correlated (e.@;., Jazwinski 1970, Example 7.5). However, in general there is no guarantee that taking 
these correlations into account is beneficial in the nonlinear case. As a matter of fact, experiments 
performed for the dynamical system of the following section indicate deterioration of the results in some 
cases when accounting for this correlation (results not shown). Ignoring the correlation in the second 
pass filter (6) is similar to ignoring equivalent correlations existing in the iterated EKF procedure use to 
handle nonlinear observation operators. 

3. RESULTS 

In this section we use the Lorenz (1963) equations to investigate the behavior of the RIA scheme. 
We refer to reader to Miller et al. (1999) and Verlaan and Heemink (2001) and references therein for a 
variety of data assimilation studies conducted using this set of equations. The Lorenz (1963) equations 

i =  4 Y  - $1 1 ( 7 4  

are applied here using the common set of parameters resulting in chaotic behavior: u = 10, p = 28, and 
,B = 8/3. As in Miller et al. (1994) the true state evolution is simulated from a deterministic integration 
of these equations starting from the initial condition (2, y, z) (O)  = (1.508870, -1.531271,25.46091). A 
fourth-order Runge-Kutta scheme is used to integrate (7) and to generate the true state trajectory. To 
make the problem somewhat more challenging we follow Evensen and Fario (1997) in choosing a different 
finite-difference scheme to integrate the equations when using them as the forecast model M in (la) 
and (5). For this purpose we use a second-order predictor-corrector scheme. Its corresponding Jacobian 
necessary for the EKF and RIA schemes is calculated following Miller et al. (1994). With different 
discretizations for the evolution of the truth and the prediction model the experiments conducted here are 
not quite of the identical twin-type. All experiments are taken up to 20 (dimensionless) time units. Both 
finite difference schemes use At = 0.00625 and observations are taken a t  time intervals Atobs = 40At, 
that is, the true state is sampled every 0.25 time units. The observation errors are uncorrelated and 
drawn from a mean-zero Gaussian distribution with variance 4. 
[Fig. 1 near here, please.] 

Miller et al. (1994) have shown that the EKF can be turned into a useful assimilation scheme for 
highly nonlinear dynamical systems such as (7) if, for example, a reasonable specification of model error 
is provided. Since, in this idealized exercise, we have access to  the true state, we estimate the model error 
covariance matrix Q k  needed in ( lb)  through a Monte Carlo simulation using 10,000 Gaussian-distributed 
initial conditions with mean zero and variance 2 in each variable. Each initial condition is integrated 
from t = 0 to t = Atobs and a t  the end of the 10,000 integrations the error covariance with respect to the 
true state is calculated a t  t = Atobs. The resulting model error covariance 

0.1628 0.2649 -0.0443 
0.2649 0.4322 -0.0678 

-0.0443 -0.0678 0.0566 

is applied at each time step during the EKF forecast error covariance evolution calculation. This model 
error covariance expresses both the effect of the distinct initial conditions used in the Monte Carlo 
simulation as well as the distinction in the finite-difference schemes used to generate the true and forecast 
states. This specification of the model error covariance is distinct from that of Miller et al. (1994) which 
is an attempt to capture the error due to linearization (2) necessary in the EKF. Though a more accurate 
description of model error can be devised in our case, the prescription here is simple and good enough to 
turn the EKF in our experiments into a reliable assimilation scheme for the dynamics in hand. 
[Fig. 2 near here, please.] 

We evaluate the performance of all assimilation experiments through Monte Carlo simulations taking 
10,000 samples from a similar distribution as that used to obtain the specification of the model error 



covariance matrix. This means in this case that we run 10,000 EKF experiments started from the 10,000 
initial conditions and each experiment takes a different sequence of observational errors drawn from a 
normal distribution with mean zero and error variance 4 in each observed variable (e.g., see Maybeck 1982, 
section 9.5). Results from the Monte Carlo experiments for the EKF with the model error covariance 
matrix Q in (8) and when all three variables are observed are displayed in Fig. 1. The three plots in 
panel (a) show the true state evolution (red curves) and the mean state evolution from the Monte Carlo 
simulations (green curves); the three plots in panel (b) show the error variances calculated from the 
Monte Carlo samples for each variable. We see that the prescribed model error covariance Q in (8) is 
enough to keep the EKF from diverging most of the time. However, the EKF does not remain completely 
on track. This can certainly be blamed on the specification of model error covariance matrix used here. 
However, the point here is not to correct the EKF deficiencies directly but rather to show that the RIA 
scheme can be used to do so indirectly. The peaks of the error variances (panel b) indicate when the 
estimates from the EKF lose accuracy. These times are usually associated with regime transition times 
as Miller et al. (1994) have shown (compare peaks of large error variance about, say, t M 5.5, or t M 11, 
for example, with the state evolution around these times seen in panel a).  
[Fig. 3 near here, please.] 

Again, a Monte Carlo simulation similar to  that performed to evaluate the EKF was carried out to 
evaluate the RIA scheme. Results are displayed in Fig. 2. We see now directly from the mean state 
evolution of the RIA estimates (green curves in panel a) a much closer agreement with the truth than 
seen for the mean state evolution estimate from the EKF of Fig. 1. The error variance plots for the RIA 
(panel b of Fig. 2) show a dramatic error reduction when compared with the corresponding EKF plots 
of Fig. 1. The peaks of large errors are again near times of regime transitions due to the chaotic nature 
of the dynamics, but their magnitudes are now much smaller than the magnitude of the errors obtained 
when the EKF is used alone [notice scale difference in panels (b) of Figs. 1 and 21. 

As in some of the experiments of Evensen and Fario (1997), a more stringent test can be constructed 
by observing only the z-component of the state vector. We show in Fig. 3 the results from Monte Carlo 
simulations with 10,000 samples for both the EKF and RIA procedures when this is the case. Panel I 
with six plots is for the EKF and panel I1 with six plots is for the RIA scheme. With both schemes the 
component with least error is the z component being observed, however the errors in the EKF estimates 
for this component are much larger than the errors in the RIA estimates [compare panel (La) with panel 
(II.a)]. The EKF essentially loses track of the y and E components after the second regime transition 
around t = 2, and indeed be said to  diverge in this case; the RIA on the other hand, never loses track of 
the unobserved variables y and E .  There is some inaccuracy in the amplitudes of the estimates of y and 
z from the RIA scheme, but no transitions are missed. 

4. CLOSING REMARKS 

In this short communication we have applied the retrospective iterated analysis (RIA) scheme of 
Todling (2000) and Zhu et a]. (2002) to the Lorenz (1963) chaotic dynamical system. The RIA scheme, 
implemented as an extension of the EKF, was shown to result in substantially improved state estimates 
when compared with the extended Kalman filter (EKF) estimates alone. We point out that the benefits 
from the RIA scheme are not in any way linked with the EKF. In fact, the RIA scheme implementation 
of Zhu et al. (2002) is an extension to the Physical-space Statistical Analysis System of Cohn et al. 
(1998) and this implementation obtains similar beneficial results. Indeed it is possible to build a reliable 
adaptive optimal interpolation (01) assimilation scheme for the chaotic dynamics used in the present 
work and to subsequently build an RIA procedure based on the adaptive 0 1  where again the benefits 
from the RIA become clear (not shown). The main conclusion here is that retrospective analysis can be 
used successfully as a means to improve regular analysis quality through a feedback procedure. It is left 
for future work to study the potential benefit from using lags higher than one to build equivalent RIA 
procedures as corrections to the underlying filtering strategy. This will be particularly relevant when the 
original filtering invokes a rapid update cycle strategy. 
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Figure Captions 
Fig. 1: Time evolution of state variables (a) and error variances (b) from the Monte Carlo simulations 

for the assimilation experiment with the EKF. Red curves in panel (a) are for the true state and 
green curves are the mean from the Monte Carlo samples. 

Fig. 2: As in Fig. 1, but using the RIA assimilation scheme. Note the different ordinate scale in panel 
(b) compared with Fig. 1. 

Fig. 3: Evaluation of the EKF (panel I) and RIA (panel 11) when only variable X is observed. 
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Figure 1: Time evolution of state variables (a) and error variances (b) from the Monte Carlo simulations 
for the assimilation experiment with the EKF. Red curves in panel (a) are for the true state and green 
curves are the mean from the Monte Carlo samples. 



((I) Truth, Ob8 end EW-RIA 

20 

x o  

-20 
I I I 
0 2 4 6 8 10 12 14 16 16 20 

20 

-20 

0 2 4 6 8 10 12 14 16 18 20 

40 

20 

0 
I 

0 2 4 6 8 10 12 14 16 16 20 
Urn. 

@) EKF-RIA emr  varlnncea 
6 

x 4  I .. 

0 2 4 6 8 10 12 14 16 16 20 

> lo 
L 
2 5  

0 0 2 4 6 8 10 12 14 16 16 

"0 2 4 8 8 10 12 14 16 18 20 
UIlU 

Figure 2: As in Fig. 1, but using the RIA assimilation scheme. Note the different ordinate scale in panel 
(b) compared with Fig. 1. 



d : 
Y 
8 
E 
6 
i s 
c' 
4 
1 

c 

8 0 8  
X 

R 

e 

F 

f 

-4 
r 

? 

D 

0 

c 

v 

> 

R 

e 

c 

f 

P 

P 

m 

10 

* 

N 

0 

R 

e 

P 

f 

N 

P 

m 

W 

U 

N 

0 

R 

PD 

F 

f 

b 

P 

D 

c) 

* 

v 

a 

8 8 8 0  
Z 

% 8 R 0  
Z 

I 5 

R 

I 

'0 

f 

N, 

P 

m 

10 

U 

N 

R 

e 

0 

f 

N 

P 

m 

D 

c 

-4 

a 

8 

I 

P 

f 

N 

P 

m 

10 

U 

N 

Figure 3: Evaluation of the EKF (panel I) and RIA (panel 11) when only variable z is observed. 


